» Articles » PMID: 10389991

Characterization of the Model for Experimental Testicular Teratoma in 129/SvJ-mice

Overview
Journal Br J Cancer
Specialty Oncology
Date 1999 Jul 2
PMID 10389991
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

An animal model of experimental testicular teratoma has been established to study how a teratoma affects the host testis and how the host testis reacts against the teratoma. 129/SvJ-mice were used as experimental animals. To induce the experimental testicular teratoma, male gonadal ridges from 12-day-old 129/SvJ-mouse fetuses were grafted into the testes of adult mice for 1-12 weeks. The developing tumour was analysed by light and electron microscopy and by immunocytochemical localization of transcription factors SOX9 and c-kit, glial fibrillary acidic protein (GFAP) and type IV collagen. Testicular teratoma was observed in 36 out of 124 testes with implanted fetal gonadal ridges (frequency 29%). One spontaneous testicular teratoma was observed in this material from 70 male mice (1.5%). One week after implantation intracordal clusters of cells were seen in embryonic testicular cords of the graft as the first sign of testicular teratomas. Four weeks after implantation the embryonic testicular cords had totally disappeared from grafts with teratomas, and the tumour tissue had enlarged the testis and invaded the interstitium of the host testis. It consisted of solitary pieces of immature cartilage as well as of glial cells and of primitive neuroepithelium. Six to eight weeks after implantation the tumour tissue had expanded so that the enlarged testis could be detected by macroscopic enlargement of the scrotum. The testicular tissue of the host had practically disappeared, and only solitary disrupted seminiferous tubules of the host were seen surrounding the teratoma. Neuroepithelial structures of some teratomas cultured for 8 weeks had cells with a granular nucleus as a sign of obvious apoptosis. Eleven to 12 weeks after implantation the growth of the teratoma had stopped, and the histology corresponded to that of a mature cystic teratoma. GFAP, SOX9 and type IV collagen were strongly positive in some parts of the tumours cultured for 4 and 8 weeks, while only occasional c-kit-positive areas were observed in tumours cultured for 8 weeks. As conclusions: (1) the metastasizing capacity of the experimental testicular teratoma is very low during 12 weeks, but the behaviour of the tumour in the testicular tissue of the graft is invasive; (2) the growth of experimental testicular teratomas cease 6-8 weeks after implantation of the fetal gonadal ridges with the obvious apoptosis of the immature tissue components; (3) the model of experimental testicular teratoma in the mouse is suitable for studying how the teratoma affects the host testis and how the host testis reacts to teratoma.

Citing Articles

Bioprinted research models of urological malignancy.

Wang G, Mao X, Wang W, Wang X, Li S, Wang Z Exploration (Beijing). 2024; 4(4):20230126.

PMID: 39175884 PMC: 11335473. DOI: 10.1002/EXP.20230126.


Neonatal Porcine Germ Cells Dedifferentiate and Display Osteogenic and Pluripotency Properties.

Fayaz M, Rosa G, Honaramooz A Cells. 2021; 10(11).

PMID: 34831039 PMC: 8616047. DOI: 10.3390/cells10112816.


Characterization of pluripotent stem cells.

Marti M, Mulero L, Pardo C, Morera C, Carrio M, Laricchia-Robbio L Nat Protoc. 2013; 8(2):223-53.

PMID: 23306458 DOI: 10.1038/nprot.2012.154.

References
1.
Stevens L . Studies on transplantable testicular teratomas of strain 129 mice. J Natl Cancer Inst. 1958; 20(6):1257-75. DOI: 10.1093/jnci/20.6.1257. View

2.
Andrews P, Casper J, Damjanov I, Giwercman A, Hata J, von Keitz A . Comparative analysis of cell surface antigens expressed by cell lines derived from human germ cell tumours. Int J Cancer. 1996; 66(6):806-16. DOI: 10.1002/(SICI)1097-0215(19960611)66:6<806::AID-IJC17>3.0.CO;2-0. View

3.
Stevens L . The development of transplantable teratocarcinomas from intratesticular grafts of pre- and postimplantation mouse embryos. Dev Biol. 1970; 21(3):364-82. DOI: 10.1016/0012-1606(70)90130-2. View

4.
Finch B, EPHRUSSI B . RETENTION OF MULTIPLE DEVELOPMENTAL POTENTIALITIES BY CELLS OF A MOUSE TESTICULAR TERATOCARCINOMA DURING PROLONGED CULTURE in vitro AND THEIR EXTINCTION UPON HYBRIDIZATION WITH CELLS OF PERMANENT LINES. Proc Natl Acad Sci U S A. 1967; 57(3):615-21. PMC: 335553. DOI: 10.1073/pnas.57.3.615. View

5.
Zheng T, Holford T, Ma Z, Ward B, Flannery J, Boyle P . Continuing increase in incidence of germ-cell testis cancer in young adults: experience from Connecticut, USA, 1935-1992. Int J Cancer. 1996; 65(6):723-9. DOI: 10.1002/(SICI)1097-0215(19960315)65:6<723::AID-IJC2>3.0.CO;2-0. View