Danovski G, Dyankova-Danovska T, Stamatov R, Aleksandrov R, Kanev P, Stoynov S
Int J Mol Sci. 2023; 24(23).
PMID: 38069107
PMC: 10706408.
DOI: 10.3390/ijms242316784.
Dutta A, Mitra J, Hegde P, Mitra S, Hegde M
Methods Mol Biol. 2023; 2701:173-182.
PMID: 37574482
DOI: 10.1007/978-1-0716-3373-1_11.
Feng S, Mann R
Curr Protoc. 2023; 3(8):e855.
PMID: 37540775
PMC: 10427663.
DOI: 10.1002/cpz1.855.
Maestroni L, Butti P, Senatore V, Branduardi P
FEMS Yeast Res. 2023; 23.
PMID: 36640150
PMC: 9906608.
DOI: 10.1093/femsyr/foad002.
Ren J, Hwang S, Shen J, Kim H, Kim H, Kim J
J Microbiol. 2022; 60(9):960-967.
PMID: 35835960
DOI: 10.1007/s12275-022-2122-z.
Beta HPV Deregulates Double-Strand Break Repair.
Hu C, Wallace N
Viruses. 2022; 14(5).
PMID: 35632690
PMC: 9146468.
DOI: 10.3390/v14050948.
The Role of CtIP in Homology-Directed Repair of DNA Double-Strand Breaks.
Yannuzzi I, Butler M, Fernandez J, LaRocque J
Genes (Basel). 2021; 12(9).
PMID: 34573412
PMC: 8468788.
DOI: 10.3390/genes12091430.
A Targeted and Tuneable DNA Damage Tool Using CRISPR/Cas9.
Emmanouilidis I, Fili N, Cook A, Hari-Gupta Y, Dos Santos A, Wang L
Biomolecules. 2021; 11(2).
PMID: 33672015
PMC: 7919286.
DOI: 10.3390/biom11020288.
In Situ Detection of Complex DNA Damage Using Microscopy: A Rough Road Ahead.
Nikitaki Z, Pariset E, Sudar D, Costes S, Georgakilas A
Cancers (Basel). 2020; 12(11).
PMID: 33172046
PMC: 7694657.
DOI: 10.3390/cancers12113288.
Recombinational Repair of Nuclease-Generated Mitotic Double-Strand Breaks with Different End Structures in Yeast.
Gamble D, Shaltz S, Jinks-Robertson S
G3 (Bethesda). 2020; 10(10):3821-3829.
PMID: 32826304
PMC: 7534431.
DOI: 10.1534/g3.120.401603.
Efficient dual-negative selection for bacterial genome editing.
Cianfanelli F, Cunrath O, Bumann D
BMC Microbiol. 2020; 20(1):129.
PMID: 32448155
PMC: 7245781.
DOI: 10.1186/s12866-020-01819-2.
Enzyme-Mediated Endogenous and Bioorthogonal Control of a DNAzyme Fluorescent Sensor for Imaging Metal Ions in Living Cells.
Lin Y, Yang Z, Lake R, Zheng C, Lu Y
Angew Chem Int Ed Engl. 2019; 58(47):17061-17067.
PMID: 31529664
PMC: 7174831.
DOI: 10.1002/anie.201910343.
Efficient genome editing using tRNA promoter-driven CRISPR/Cas9 gRNA in Aspergillus niger.
Song L, Ouedraogo J, Kolbusz M, Nguyen T, Tsang A
PLoS One. 2018; 13(8):e0202868.
PMID: 30142205
PMC: 6108506.
DOI: 10.1371/journal.pone.0202868.
Direct observation of end resection by RecBCD during double-stranded DNA break repair in vivo.
Wiktor J, van der Does M, Buller L, Sherratt D, Dekker C
Nucleic Acids Res. 2018; 46(4):1821-1833.
PMID: 29294118
PMC: 5829741.
DOI: 10.1093/nar/gkx1290.
Analysis of Repair Mechanisms following an Induced Double-Strand Break Uncovers Recessive Deleterious Alleles in the Candida albicans Diploid Genome.
Feri A, Loll-Krippleber R, Commere P, Maufrais C, Sertour N, Schwartz K
mBio. 2016; 7(5).
PMID: 27729506
PMC: 5061868.
DOI: 10.1128/mBio.01109-16.
Strategies for gene disruption in Drosophila.
Lin S, Chang Y, Chan C
Cell Biosci. 2014; 4(1):63.
PMID: 25364499
PMC: 4216337.
DOI: 10.1186/2045-3701-4-63.
Quantifying DNA double-strand breaks induced by site-specific endonucleases in living cells by ligation-mediated purification.
Chailleux C, Aymard F, Caron P, Daburon V, Courilleau C, Canitrot Y
Nat Protoc. 2014; 9(3):517-28.
PMID: 24504477
DOI: 10.1038/nprot.2014.031.
Inducible protein traps with dominant phenotypes for functional analysis of the Drosophila genome.
Singari S, Javeed N, Tardi N, Marada S, Carlson J, Kirk S
Genetics. 2013; 196(1):91-105.
PMID: 24172131
PMC: 3872200.
DOI: 10.1534/genetics.113.157529.
Repair of strand breaks by homologous recombination.
Jasin M, Rothstein R
Cold Spring Harb Perspect Biol. 2013; 5(11):a012740.
PMID: 24097900
PMC: 3809576.
DOI: 10.1101/cshperspect.a012740.
Females and males contribute in opposite ways to the evolution of gene order in Drosophila.
Diaz-Castillo C
PLoS One. 2013; 8(5):e64491.
PMID: 23696898
PMC: 3655977.
DOI: 10.1371/journal.pone.0064491.