» Articles » PMID: 10388776

Separation of Submicron Bioparticles by Dielectrophoresis

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 1999 Jul 2
PMID 10388776
Citations 90
Authors
Affiliations
Soon will be listed here.
Abstract

Submicron particles such as latex spheres and viruses can be manipulated and characterized using dielectrophoresis. By the use of appropriate microelectrode arrays, particles can be trapped or moved between regions of high or low electric fields. The magnitude and direction of the dielectrophoretic force on the particle depends on its dielectric properties, so that a heterogeneous mixture of particles can be separated to produce a more homogeneous population. In this paper the controlled separation of submicron bioparticles is demonstrated. With electrode arrays fabricated using direct write electron beam lithography, it is shown that different types of submicron latex spheres can be spatially separated. The separation occurs as a result of differences in magnitude and/or direction of the dielectrophoretic force on different populations of particles. These differences arise mainly because the surface properties of submicron particles dominate their dielectrophoretic behavior. It is also demonstrated that tobacco mosaic virus and herpes simplex virus can be manipulated and spatially separated in a microelectrode array.

Citing Articles

Dielectrophoretic characterization of peroxidized retinal pigment epithelial cells as a model of age-related macular degeneration.

Yadav D, Tivig I, Savopol T, Moisescu M BMC Ophthalmol. 2024; 24(1):340.

PMID: 39138426 PMC: 11320855. DOI: 10.1186/s12886-024-03617-0.


Electrochemical Impedance Spectroscopy in the Determination of the Dielectric Properties of Tau-441 Protein for Dielectrophoresis Response Prediction.

Shee Da En Z, Noor E, Ahmed Kayani A, Hussin M, Baig M Bioengineering (Basel). 2024; 11(7).

PMID: 39061780 PMC: 11274257. DOI: 10.3390/bioengineering11070698.


Constrained Volume Micro- and Nanoparticle Collection Methods in Microfluidic Systems.

Wells T, Schmidt H, Hawkins A Micromachines (Basel). 2024; 15(6).

PMID: 38930668 PMC: 11206162. DOI: 10.3390/mi15060699.


Microfluidic techniques for mechanical measurements of biological samples.

Salipante P Biophys Rev (Melville). 2024; 4(1):011303.

PMID: 38505816 PMC: 10903441. DOI: 10.1063/5.0130762.


Manipulation, Sampling and Inactivation of the SARS-CoV-2 Virus Using Nonuniform Electric Fields on Micro-Fabricated Platforms: A Review.

Mantri D, Wymenga L, van Turnhout J, van Zeijl H, Zhang G Micromachines (Basel). 2023; 14(2).

PMID: 36838044 PMC: 9967285. DOI: 10.3390/mi14020345.


References
1.
Hsu S, Wang B, Huang M, Wong W, Cross J . Growth of Japanese encephalitis virus in Culex tritaeniorhynchus cell cultures. Am J Trop Med Hyg. 1975; 24(5):881-8. DOI: 10.4269/ajtmh.1975.24.881. View

2.
Irimajiri A, Hanai T, INOUYE A . A dielectric theory of "multi-stratified shell" model with its application to a lymphoma cell. J Theor Biol. 1979; 78(2):251-69. DOI: 10.1016/0022-5193(79)90268-6. View

3.
Price J, Burt J, Pethig R . Applications of a new optical technique for measuring the dielectrophoretic behaviour of micro-organisms. Biochim Biophys Acta. 1988; 964(2):221-30. DOI: 10.1016/0304-4165(88)90170-5. View

4.
Huang Y, Holzel R, Pethig R, Wang X . Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies. Phys Med Biol. 1992; 37(7):1499-517. DOI: 10.1088/0031-9155/37/7/003. View

5.
Markx G, Talary M, Pethig R . Separation of viable and non-viable yeast using dielectrophoresis. J Biotechnol. 1994; 32(1):29-37. DOI: 10.1016/0168-1656(94)90117-1. View