» Articles » PMID: 10354444

Unrestrained Stochastic Dynamics Simulations of the UUCG Tetraloop Using an Implicit Solvation Model

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 1999 Jun 4
PMID 10354444
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

Three unrestrained stochastic dynamics simulations have been carried out on the RNA hairpin GGAC[UUCG] GUCC, using the AMBER94 force field (Cornell et al., 1995. J. Am. Chem. Soc. 117:5179-5197) in MacroModel 5.5 (Mohamadi et al., 1990. J. Comp. Chem. 11:440-467) and either the GB/SA continuum solvation model (Still et al., 1990. J. Am. Chem. Soc. 112:6127-6129) or a linear distance-dependent dielectric (1/R) treatment. The linear distance-dependent treatment results in severe distortion of the nucleic acid structure, restriction of all hydroxyl dihedrals, and collapse of the counterion atmosphere over the course of a 5-ns simulation. An additional vacuum simulation without counterions shows somewhat improved behavior. In contrast, the two GB/SA simulations (1.149 and 3.060 ns in length) give average structures within 1.2 A of the initial NMR structure and in excellent agreement with results of an earlier explicit solvent simulation (Miller and Kollman, 1997. J. Mol. Biol. 270:436-450). In a 3-ns GB/SA simulation starting with the incorrect UUCG tetraloop structure (Cheong et al., 1990. Nature. 346:680-682), this loop conformation converts to the correct loop geometry (Allain and Varani, 1995. J. Mol. Biol. 250:333-353), suggesting enhanced sampling relative to the previous explicit solvent simulation. Thermodynamic effects of 2'-deoxyribose substitutions of loop nucleotides were experimentally determined and are found to correlate with the fraction of time the ribose 2'-OH is hydrogen bonded and the distribution of the hydroxyl dihedral is observed in the GB/SA simulations. The GB/SA simulations thus appear to faithfully represent structural features of the RNA without the computational expense of explicit solvent.

Citing Articles

Performance of Molecular Mechanics Force Fields for RNA Simulations: Stability of UUCG and GNRA Hairpins.

Banas P, Hollas D, Zgarbova M, Jurecka P, Orozco M, Cheatham 3rd T J Chem Theory Comput. 2022; 6(12):3836-3849.

PMID: 35283696 PMC: 8916691. DOI: 10.1021/ct100481h.


RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview.

Sponer J, Bussi G, Krepl M, Banas P, Bottaro S, Cunha R Chem Rev. 2018; 118(8):4177-4338.

PMID: 29297679 PMC: 5920944. DOI: 10.1021/acs.chemrev.7b00427.


Refinement of Generalized Born Implicit Solvation Parameters for Nucleic Acids and Their Complexes with Proteins.

Nguyen H, Perez A, Bermeo S, Simmerling C J Chem Theory Comput. 2015; 11(8):3714-28.

PMID: 26574454 PMC: 4805114. DOI: 10.1021/acs.jctc.5b00271.


Molecular dynamics of ribosomal elongation factors G and Tu.

Kulczycka K, Dlugosz M, Trylska J Eur Biophys J. 2010; 40(3):289-303.

PMID: 21152913 PMC: 3045518. DOI: 10.1007/s00249-010-0647-2.


High-resolution NMR structure of an RNA model system: the 14-mer cUUCGg tetraloop hairpin RNA.

Nozinovic S, Furtig B, Jonker H, Richter C, Schwalbe H Nucleic Acids Res. 2009; 38(2):683-94.

PMID: 19906714 PMC: 2811024. DOI: 10.1093/nar/gkp956.


References
1.
Miller J, Kollman P . Observation of an A-DNA to B-DNA transition in a nonhelical nucleic acid hairpin molecule using molecular dynamics. Biophys J. 1997; 73(5):2702-10. PMC: 1181171. DOI: 10.1016/S0006-3495(97)78298-5. View

2.
Young M, Ravishanker G, Beveridge D . A 5-nanosecond molecular dynamics trajectory for B-DNA: analysis of structure, motions, and solvation. Biophys J. 1997; 73(5):2313-36. PMC: 1181136. DOI: 10.1016/S0006-3495(97)78263-8. View

3.
Caves L, Evanseck J, Karplus M . Locally accessible conformations of proteins: multiple molecular dynamics simulations of crambin. Protein Sci. 1998; 7(3):649-66. PMC: 2143962. DOI: 10.1002/pro.5560070314. View

4.
Lesnik E, Freier S . What affects the effect of 2'-alkoxy modifications? 1. Stabilization effect of 2'-methoxy substitutions in uniformly modified DNA oligonucleotides. Biochemistry. 1998; 37(19):6991-7. DOI: 10.1021/bi972995c. View

5.
Schaefer M, Bartels C, Karplus M . Solution conformations and thermodynamics of structured peptides: molecular dynamics simulation with an implicit solvation model. J Mol Biol. 1998; 284(3):835-48. DOI: 10.1006/jmbi.1998.2172. View