» Articles » PMID: 10339559

Stretching Single-domain Proteins: Phase Diagram and Kinetics of Force-induced Unfolding

Overview
Specialty Science
Date 1999 May 26
PMID 10339559
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

Single-molecule force spectroscopy reveals unfolding of domains in titin on stretching. We provide a theoretical framework for these experiments by computing the phase diagrams for force-induced unfolding of single-domain proteins using lattice models. The results show that two-state folders (at zero force) unravel cooperatively, whereas stretching of non-two-state folders occurs through intermediates. The stretching rates of individual molecules show great variations reflecting the heterogeneity of force-induced unfolding pathways. The approach to the stretched state occurs in a stepwise "quantized" manner. Unfolding dynamics and forces required to stretch proteins depend sensitively on topology. The unfolding rates increase exponentially with force f till an optimum value, which is determined by the barrier to unfolding when f = 0. A mapping of these results to proteins shows qualitative agreement with force-induced unfolding of Ig-like domains in titin. We show that single-molecule force spectroscopy can be used to map the folding free energy landscape of proteins in the absence of denaturants.

Citing Articles

Molten globule-like transition state of protein barnase measured with calorimetric force spectroscopy.

Rico-Pasto M, Zaltron A, Davis S, Frutos S, Ritort F Proc Natl Acad Sci U S A. 2022; 119(11):e2112382119.

PMID: 35271392 PMC: 8931224. DOI: 10.1073/pnas.2112382119.


Role of Resultant Dipole Moment in Mechanical Dissociation of Biological Complexes.

Kouza M, Banerji A, Kolinski A, Buhimschi I, Kloczkowski A Molecules. 2018; 23(8).

PMID: 30103417 PMC: 6222447. DOI: 10.3390/molecules23081995.


Theory of Biopolymer Stretching at High Forces.

Toan N, Thirumalai D Macromolecules. 2017; 43(9):4394-4400.

PMID: 29225374 PMC: 5722244. DOI: 10.1021/ma902008y.


Stochastic emergence of multiple intermediates detected by single-molecule quasi-static mechanical unfolding of protein.

Fukagawa A, Hiroshima M, Sakane I, Tokunaga M Biophysics (Nagoya-shi). 2016; 5:25-35.

PMID: 27857576 PMC: 5036639. DOI: 10.2142/biophysics.5.25.


Force-dependent switch in protein unfolding pathways and transition-state movements.

Zhuravlev P, Hinczewski M, Chakrabarti S, Marqusee S, Thirumalai D Proc Natl Acad Sci U S A. 2016; 113(6):E715-24.

PMID: 26818842 PMC: 4760810. DOI: 10.1073/pnas.1515730113.


References
1.
Tskhovrebova L, Trinick J, Sleep J, Simmons R . Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature. 1997; 387(6630):308-12. DOI: 10.1038/387308a0. View

2.
Pan K, Damodaran S, Greaser M . Isolation and characterization of titin T1 from bovine cardiac muscle. Biochemistry. 1994; 33(27):8255-61. DOI: 10.1021/bi00193a012. View

3.
Perkins T, Smith D, Chu S . Single polymer dynamics in an elongational flow. Science. 1997; 276(5321):2016-21. DOI: 10.1126/science.276.5321.2016. View

4.
Smith S, Cui Y, Bustamante C . Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science. 1996; 271(5250):795-9. DOI: 10.1126/science.271.5250.795. View

5.
Klimov D, Thirumalai D . Factors governing the foldability of proteins. Proteins. 1996; 26(4):411-41. DOI: 10.1002/(SICI)1097-0134(199612)26:4<411::AID-PROT4>3.0.CO;2-E. View