» Articles » PMID: 10094694

A Periplasmic D-alanyl-D-alanine Dipeptidase in the Gram-negative Bacterium Salmonella Enterica

Overview
Journal J Bacteriol
Specialty Microbiology
Date 1999 Mar 27
PMID 10094694
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

The VanX protein is a D-alanyl-D-alanine (D-Ala-D-Ala) dipeptidase essential for resistance to the glycopeptide antibiotic vancomycin. While this enzymatic activity has been typically associated with vancomycin- and teicoplainin-resistant enterococci, we now report the identification of a D-Ala-D-Ala dipeptidase in the gram-negative species Salmonella enterica. The Salmonella enzyme is only 36% identical to VanX but exhibits a similar substrate specificity: it hydrolyzes D-Ala-D-Ala, DL-Ala-DL-Phe, and D-Ala-Gly but not the tripeptides D-Ala-D-Ala-D-Ala and DL-Ala-DL-Lys-Gly or the dipeptides L-Ala-L-Ala, N-acetyl-D-Ala-D-Ala, and L-Leu-Pro. The Salmonella dipeptidase gene, designated pcgL, appears to have been acquired by horizontal gene transfer because pcgL-hybridizing sequences were not detected in related bacterial species and the G+C content of the pcgL-containing region (41%) is much lower than the overall G+C content of the Salmonella chromosome (52%). In contrast to wild-type Salmonella, a pcgL mutant was unable to use D-Ala-D-Ala as a sole carbon source. The pcgL gene conferred D-Ala-D-Ala dipeptidase activity upon Escherichia coli K-12 but did not allow growth on D-Ala-D-Ala. The PcgL protein localizes to the periplasmic space of Salmonella, suggesting that this dipeptidase participates in peptidoglycan metabolism.

Citing Articles

Predominantly Orphan Secretome in the Lung Pathogen Revealed by a Multipronged Growth-Phase-Driven Strategy.

Chandra H, Gupta M, Lam Y, Yadav J Microorganisms. 2024; 12(2).

PMID: 38399782 PMC: 10892769. DOI: 10.3390/microorganisms12020378.


How Bacterial Pathogens Coordinate Appetite with Virulence.

Pokorzynski N, Groisman E Microbiol Mol Biol Rev. 2023; 87(3):e0019822.

PMID: 37358444 PMC: 10521370. DOI: 10.1128/mmbr.00198-22.


A virulence activator of a surface attachment protein in acts as a global regulator of other membrane-associated virulence factors.

Sun Z, Heacock-Kang Y, McMillan I, Cabanas D, Zarzycki-Siek J, Hoang T Front Microbiol. 2023; 13:1063287.

PMID: 36726566 PMC: 9884982. DOI: 10.3389/fmicb.2022.1063287.


Differential synthesis of novel small protein times Salmonella virulence program.

Salvail H, Choi J, Groisman E PLoS Genet. 2022; 18(3):e1010074.

PMID: 35245279 PMC: 8896665. DOI: 10.1371/journal.pgen.1010074.


RNA chaperone activates Salmonella virulence program during infection.

Choi J, Salvail H, Groisman E Nucleic Acids Res. 2021; 49(20):11614-11628.

PMID: 34751407 PMC: 8599858. DOI: 10.1093/nar/gkab992.


References
1.
Soncini F, Garcia Vescovi E, Solomon F, Groisman E . Molecular basis of the magnesium deprivation response in Salmonella typhimurium: identification of PhoP-regulated genes. J Bacteriol. 1996; 178(17):5092-9. PMC: 178303. DOI: 10.1128/jb.178.17.5092-5099.1996. View

2.
Garcia-del Portillo F, Stein M, Finlay B . Release of lipopolysaccharide from intracellular compartments containing Salmonella typhimurium to vesicles of the host epithelial cell. Infect Immun. 1997; 65(1):24-34. PMC: 174552. DOI: 10.1128/iai.65.1.24-34.1997. View

3.
Quintela J, de Pedro M, Zollner P, Allmaier G, Garcia-del Portillo F . Peptidoglycan structure of Salmonella typhimurium growing within cultured mammalian cells. Mol Microbiol. 1997; 23(4):693-704. DOI: 10.1046/j.1365-2958.1997.2561621.x. View

4.
Guo L, Lim K, Gunn J, Bainbridge B, Darveau R, Hackett M . Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. Science. 1997; 276(5310):250-3. DOI: 10.1126/science.276.5310.250. View

5.
McCafferty D, Lessard I, WALSH C . Mutational analysis of potential zinc-binding residues in the active site of the enterococcal D-Ala-D-Ala dipeptidase VanX. Biochemistry. 1997; 36(34):10498-505. DOI: 10.1021/bi970543u. View