» Articles » PMID: 10091662

The Mechanism of Sugar Phosphate Isomerization by Glucosamine 6-phosphate Synthase

Overview
Journal Protein Sci
Specialty Biochemistry
Date 1999 Mar 26
PMID 10091662
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

Glucosamine 6-phosphate synthase converts fructose-6P into glucosamine-6P or glucose-6P depending on the presence or absence of glutamine. The isomerase activity is associated with a 40-kDa C-terminal domain, which has already been characterized crystallographically. Now the three-dimensional structures of the complexes with the reaction product glucose-6P and with the transition state analog 2-amino-2-deoxyglucitol-6P have been determined. Glucose-6P binds in a cyclic form whereas 2-amino-2-deoxyglucitol-6P is in an extended conformation. The information on ligand-protein interactions observed in the crystal structures together with the isotope exchange and site-directed mutagenesis data allow us to propose a mechanism of the isomerase activity of glucosamine-6P synthase. The sugar phosphate isomerization involves a ring opening step catalyzed by His504 and an enolization step with Glu488 catalyzing the hydrogen transfer from C1 to C2 of the substrate. The enediol intermediate is stabilized by a helix dipole and the epsilon-amino group of Lys603. Lys485 may play a role in deprotonating the hydroxyl O1 of the intermediate.

Citing Articles

Insights into the catalytic mechanism of a bacterial deglycase essential for utilization of fructose-lysine.

Kovvali S, Gao Y, Cool A, Lindert S, Wysocki V, Bell C Protein Sci. 2023; 32(7):e4695.

PMID: 37289023 PMC: 10285752. DOI: 10.1002/pro.4695.


Substrate binding in the allosteric site mimics homotropic cooperativity in the SIS-fold glucosamine-6-phosphate deaminases.

Marcos-Viquez J, Rodriguez-Hernandez A, Alvarez-Anorve L, Medina-Garcia A, Plumbridge J, Calcagno M Protein Sci. 2023; 32(6):e4651.

PMID: 37145875 PMC: 10201695. DOI: 10.1002/pro.4651.


Comparison of Hyaluronic Acid Biosynthetic Genes From Different Strains of .

Pasomboon P, Chumnanpuen P, E-Kobon T Bioinform Biol Insights. 2021; 15:11779322211027406.

PMID: 34220200 PMC: 8221702. DOI: 10.1177/11779322211027406.


Conformational Changes of Glutamine 5'-Phosphoribosylpyrophosphate Amidotransferase for Two Substrates Analogue Binding: Insight from Conventional Molecular Dynamics and Accelerated Molecular Dynamics Simulations.

Li C, Chen S, Huang T, Zhang F, Yuan J, Chang H Front Chem. 2021; 9:640994.

PMID: 33718330 PMC: 7953260. DOI: 10.3389/fchem.2021.640994.


Loss of GFAT-1 feedback regulation activates the hexosamine pathway that modulates protein homeostasis.

Ruegenberg S, Horn M, Pichlo C, Allmeroth K, Baumann U, Denzel M Nat Commun. 2020; 11(1):687.

PMID: 32019926 PMC: 7000685. DOI: 10.1038/s41467-020-14524-5.


References
1.
ZALKIN H . The amidotransferases. Adv Enzymol Relat Areas Mol Biol. 1993; 66:203-309. DOI: 10.1002/9780470123126.ch5. View

2.
ZALKIN H, Smith J . Enzymes utilizing glutamine as an amide donor. Adv Enzymol Relat Areas Mol Biol. 1998; 72:87-144. DOI: 10.1002/9780470123188.ch4. View

3.
Massiere F . The mechanism of glutamine-dependent amidotransferases. Cell Mol Life Sci. 1998; 54(3):205-22. PMC: 11147313. DOI: 10.1007/s000180050145. View

4.
Teplyakov A, Obmolova G, Badet B, Polikarpov I . Involvement of the C terminus in intramolecular nitrogen channeling in glucosamine 6-phosphate synthase: evidence from a 1.6 A crystal structure of the isomerase domain. Structure. 1998; 6(8):1047-55. DOI: 10.1016/s0969-2126(98)00105-1. View

5.
Malaisse-Lagae F, Liemans V, Yaylali B, Sener A, Malaisse W . Phosphoglucoisomerase-catalyzed interconversion of hexose phosphates; comparison with phosphomannoisomerase. Biochim Biophys Acta. 1989; 998(2):118-25. DOI: 10.1016/0167-4838(89)90262-8. View