Wiedermannova J, Julius C, Yuzenkova Y
R Soc Open Sci. 2021; 8(5):201979.
PMID: 34017598
PMC: 8131947.
DOI: 10.1098/rsos.201979.
Mills L, McCormick A, Lea-Smith D
Biosci Rep. 2020; 40(4).
PMID: 32149336
PMC: 7133116.
DOI: 10.1042/BSR20193325.
Ishikawa Y, Kawai-Yamada M
Front Plant Sci. 2019; 10:847.
PMID: 31316540
PMC: 6610520.
DOI: 10.3389/fpls.2019.00847.
Lee J, Li Z, Miller E
J Bacteriol. 2017; 199(9).
PMID: 28167526
PMC: 5388814.
DOI: 10.1128/JB.00855-16.
Singh P, Shrivastava A, Singh S, Rai R, Chatterjee A, Rai L
Funct Integr Genomics. 2016; 17(1):39-52.
PMID: 27778111
DOI: 10.1007/s10142-016-0531-y.
Nicotinamide mononucleotide adenylyltransferase displays alternate binding modes for nicotinamide nucleotides.
Pfoh R, Pai E, Saridakis V
Acta Crystallogr D Biol Crystallogr. 2015; 71(Pt 10):2032-9.
PMID: 26457427
PMC: 4601368.
DOI: 10.1107/S1399004715015497.
Biogenesis and Homeostasis of Nicotinamide Adenine Dinucleotide Cofactor.
Osterman A
EcoSal Plus. 2015; 3(2).
PMID: 26443758
PMC: 4229845.
DOI: 10.1128/ecosalplus.3.6.3.10.
Genomics-guided analysis of NAD recycling yields functional elucidation of COG1058 as a new family of pyrophosphatases.
Cialabrini L, Ruggieri S, Kazanov M, Sorci L, Mazzola F, Orsomando G
PLoS One. 2013; 8(6):e65595.
PMID: 23776507
PMC: 3680494.
DOI: 10.1371/journal.pone.0065595.
Genomics-driven reconstruction of acinetobacter NAD metabolism: insights for antibacterial target selection.
Sorci L, Blaby I, De Ingeniis J, Gerdes S, Raffaelli N, de Crecy Lagard V
J Biol Chem. 2010; 285(50):39490-9.
PMID: 20926389
PMC: 2998121.
DOI: 10.1074/jbc.M110.185629.
Microbial NAD metabolism: lessons from comparative genomics.
Gazzaniga F, Stebbins R, Chang S, McPeek M, Brenner C
Microbiol Mol Biol Rev. 2009; 73(3):529-41, Table of Contents.
PMID: 19721089
PMC: 2738131.
DOI: 10.1128/MMBR.00042-08.
Transcriptional regulation of NAD metabolism in bacteria: NrtR family of Nudix-related regulators.
Rodionov D, De Ingeniis J, Mancini C, Cimadamore F, Zhang H, Osterman A
Nucleic Acids Res. 2008; 36(6):2047-59.
PMID: 18276643
PMC: 2330246.
DOI: 10.1093/nar/gkn047.
Bifunctional NMN adenylyltransferase/ADP-ribose pyrophosphatase: structure and function in bacterial NAD metabolism.
Huang N, Sorci L, Zhang X, Brautigam C, Li X, Raffaelli N
Structure. 2008; 16(2):196-209.
PMID: 18275811
PMC: 2258087.
DOI: 10.1016/j.str.2007.11.017.
Comparative genomics of NAD biosynthesis in cyanobacteria.
Gerdes S, Kurnasov O, Shatalin K, Polanuyer B, Sloutsky R, Vonstein V
J Bacteriol. 2006; 188(8):3012-23.
PMID: 16585762
PMC: 1446974.
DOI: 10.1128/JB.188.8.3012-3023.2006.
Systematic characterization of the ADP-ribose pyrophosphatase family in the Cyanobacterium Synechocystis sp. strain PCC 6803.
Okuda K, Hayashi H, Nishiyama Y
J Bacteriol. 2005; 187(14):4984-91.
PMID: 15995214
PMC: 1169527.
DOI: 10.1128/JB.187.14.4984-4991.2005.
Characterization of human brain nicotinamide 5'-mononucleotide adenylyltransferase-2 and expression in human pancreas.
Yalowitz J, Xiao S, Biju M, Antony A, Cummings O, Deeg M
Biochem J. 2003; 377(Pt 2):317-26.
PMID: 14516279
PMC: 1223862.
DOI: 10.1042/BJ20030518.
Complete genome sequence of the broad-host-range vibriophage KVP40: comparative genomics of a T4-related bacteriophage.
Miller E, Heidelberg J, Eisen J, Nelson W, Durkin A, Ciecko A
J Bacteriol. 2003; 185(17):5220-33.
PMID: 12923095
PMC: 180978.
DOI: 10.1128/JB.185.17.5220-5233.2003.
Identification of the Escherichia coli nicotinic acid mononucleotide adenylyltransferase gene.
Mehl R, Kinsland C, Begley T
J Bacteriol. 2000; 182(15):4372-4.
PMID: 10894752
PMC: 101968.
DOI: 10.1128/JB.182.15.4372-4374.2000.
The Escherichia coli NadR regulator is endowed with nicotinamide mononucleotide adenylyltransferase activity.
Raffaelli N, Lorenzi T, Mariani P, Emanuelli M, Amici A, Ruggieri S
J Bacteriol. 1999; 181(17):5509-11.
PMID: 10464228
PMC: 94063.
DOI: 10.1128/JB.181.17.5509-5511.1999.